Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 2: Nonplanar Faults
نویسندگان
چکیده
Observations demonstrate that faults are fractal surfaces with deviations from planarity at all scales. We study dynamic rupture propagation on self-similar faults having root mean square (rms) height fluctuations of order 10 3 to 10 2 times the profile length. Our 2D plane strain models feature strongly rate-weakening fault friction and off-fault Drucker–Prager viscoplasticity. The latter bounds otherwise unreasonably large stress concentrations in the vicinity of bends. Our choice of a cohesionless yield function prevents tensile stress states and thus fault opening. A consequence of strongly rate-weakening friction is the existence of a critical background stress level above which self-sustaining rupture propagation, in the form of self-healing slip pulses, first becomes possible. Around this level, at which natural faults are expected to operate, ruptures become extremely sensitive to fault roughness and exhibit substantial fluctuations in rupture velocity. Except for shallow inclinations of the maximum compressive stress to the fault (less than about 20°), the fluctuations are anticorrelated with the local fault slope. These accelerations and decelerations of the rupture, together with naturally emerging slip heterogeneity, excite waves of all wavelengths and result in ground acceleration spectra that are flat at high frequency, consistent with observed strong motion records.
منابع مشابه
Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 1: Planar Faults
We study dynamic rupture propagation on flat faults using 2D plane strain models featuring strongly rate-weakening fault friction (in a rate-and-state framework) and off-fault Drucker–Prager viscoplasticity. Plastic deformation bounds stresses near the rupture front and limits slip velocities to ∼10 m=s, a bound expected to be independent of earthquake magnitude. As originally shown for rupture...
متن کاملEarthquake Ruptures on Rough Faults
Natural fault surfaces exhibit roughness at all scales, with root-mean-square height fluctuations of order 10−3 to 10−2 times the profile length. We study earthquake rupture propagation on such faults, using strongly rate-weakening fault friction and offfault plasticity. Inelastic deformation bounds stresses to reasonable values and prevents fault opening. Stress perturbations induced by slip o...
متن کاملEarthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels
[1] We model ruptures on faults that weaken in response to flash heating of microscopic asperity contacts (within a rate-and-state framework) and thermal pressurization of pore fluid. These are arguably the primary weakening mechanisms on mature faults at coseismic slip rates, at least prior to large slip accumulation. Ruptures on strongly rate-weakening faults take the form of slip pulses or c...
متن کاملRupture modes in laboratory earthquakes: Effect of fault prestress and nucleation conditions
[1] Seismic inversions show that earthquake risetimes may be much shorter than the overall rupture duration, indicating that earthquakes may propagate as self‐healing, pulse‐like ruptures. Several mechanisms for producing pulse‐like ruptures have been proposed, including velocity‐weakening friction, interaction of dynamic rupture with fault geometry and local heterogeneity, and effect of bimate...
متن کاملShear strain localization in elastodynamic rupture simulations
We study strain localization as an enhanced velocity weakening mechanism on earthquake faults. Fault friction is modeled using Shear Transformation Zone (STZ) Theory, a microscopic physical model for non-affine rearrangements in granular fault gouge. STZ Theory is implemented in spring slider and dynamic rupture models of faults. We compare dynamic shear localization to deformation that is unif...
متن کامل